skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Argo, Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT We report on Very Long Baseline Interferometry (VLBI) observations of the fast and blue optical transient (FBOT), AT 2018cow. At ∼62 Mpc, AT 2018cow is the first relatively nearby FBOT. The nature of AT 2018cow is not clear, although various hypotheses from a tidal disruption event to different kinds of supernovae have been suggested. It had a very fast rise time (3.5 d) and an almost featureless blue spectrum, although high photospheric velocities (40 000 km s−1) were suggested early on. The X-ray luminosity was very high, ∼1.4 × 1043 erg s−1, larger than those of ordinary supernovae (SNe), and more consistent with those of SNe associated with gamma-ray bursts. Variable hard X-ray emission hints at a long-lived ‘central engine.’ It was also fairly radio luminous, with a peak 8.4-GHz spectral luminosity of ∼4 × 1028 erg s−1 Hz−1, allowing us to make VLBI observations at ages between 22 and 287 d. We do not resolve AT 2018cow. Assuming a circularly symmetric source, our observations constrain the average apparent expansion velocity to be $${\lt}0.49\, c$$ by t = 98 d (3σ limit). We also constrain the proper motion of AT 2018cow to be $${\lt}0.51\, c$$. Since the radio emission generally traces the fastest ejecta, our observations make the presence of a long-lived relativistic jet with a lifetime of more than 1 month very unlikely. 
    more » « less